Peer-Reviewed Papers

  • Kawai M, Kuntz ID (1973).  Optical diffraction studies of muscle fibers.  Biophys J 13:857-876.
  • Kawai M, Brandt PW (1976).  Two rigor states in skinned crayfish single muscle fibers.  J Gen Physiol 68:267-280.
  • Kawai M, Brandt PW, Orentlicher M (1977).  Dependence of energy transduction in intact skeletal muscles on the time in tension.  Biophys J 18:161-172.
  • Kawai M, Brandt PW (1977) Effect of MgATP on stiffness measured at two frequencies in Ca activated muscle fibers.  Proc Natl Acad Sci USA 74:4073-4075.
  • Kawai M (1978).  Head rotation or dissociation?  A study of exponential rate processes in chemically skinned rabbit muscle fibers when MgATP concentration is changed.  Biophys J 22:97-103. PMC1473409
  • Cox RN, Kawai M, Karlin A, Brandt PW (1979).  Voltage fluctuations at the frog sartorius motor endplate produced by a covalently attached activator.   J Membrane Biol 51:145-159.
  • Kawai M, Brandt PW (1980).  Sinusoidal analysis: a high resolution method for correlating biochemical reactions with physiological processes in activated skeletal muscles of rabbit, frog and crayfish.  J Muscle Res Cell Mot 1:279-303. PMID: 6971874
  • Brandt PW, Cox RN, Kawai M (1980).  Can the binding of Ca2+ to two regulatory sites on troponin C determine the steep pCa/tension of relationship of skeletal muscle?  Proc Natl Acad Sci USA 77:4717-4720.
  • Cox RN, Kawai M (1981).  Alternate energy transduction routes in chemically skinned rabbit psoas muscle fibers: a further study of the effect of MgATP over a wide concentration range.  J Muscle Res Cell Mot 2:203-214.
  • Kawai M, Cox RN, Brandt PW (1981).  Effect of Ca ion concentration on cross-bridge kinetics in rabbit psoas fibers.  Evidence for the presence of two Ca-activated states of thin filament.  Biophys J 35:375-384.
  • Brandt PW, Cox RN, Kawai M, Robinson T (1982).  Regulation of tension in skinned muscle fibers: effect of cross-bridge rate constants on apparent Ca sensitivity.  J Gen Physiol  79:997-1016.
  • Kawai M, Schachat FH (1984).  Differences in the transient response to fast and slow skeletal muscle fibers: correlations between complex modulus and myosin light chains.  Biophys J 45:1145-1151.
  • Brandt PW, Diamond MS, Gluck B, Kawai M, Schachat FH (1984).  Molecular basis of cooperativity in vertebrate muscle thin filaments.  Carlsberg Research Communication (Copenhagen), 49:155-167.
  • Kawai M, Schulman MI (1985).  Cross-bridge kinetics in chemically skinned rabbit psoas fibres when the actin-myosin lattice spacing is altered by dextran T-500.  J Muscle Res Cell Mot 6:313-332.
  • Feit H, Kawai M, Schulman MI (1985).  Stiffness and contractile properties of avian normal and dystrophic muscle bundles as measured by sinusoidal length perturbations.  Muscle and Nerve 8:503-510.
  • Feit H, Kawai M (1985).  Physiological and biochemical characterization of avian dystrophic muscle reveals alterations of collagen.  Annals of the New York Academy of Sciences 460:431-433.
  • Feit H, Hammon K, Kawai M (1985).  Collagen in chemically skinned, extracted dystrophic myofibers.  Muscle and Nerve 8:806-807.
  • Kawai M. (1986).  The role of orthophosphate in cross-bridge kinetics in chemically skinned rabbit psoas fibers as detected with sinusoidal and step length alterations.  J Muscle Res Cell Mot 7:421-434.
  • Diamond MS, Brandt PW, Kawai M (1986).  Comments on the "Critical dependence of calcium-activated force on width in highly compressed fibers of the frog."  Biophys J 50:1215-1216.
  • Kawai M, Güth K, Winnikes K, Haist C Rüegg JC (1987).  The effect of inorganic phosphate on the ATP hydrolysis rate and the tension transients in chemically skinned rabbit psoas fibers.  Pflügers Archiv 408:1-9.
  • Kawai M, Halvorson HR (1989).  Role of MgATP and MgADP in the crossbridge kinetics in chemically skinned rabbit psoas fibers.  Study of a fast exponential process (C).  Biophys J 55:595-603.
  • Feit H, Kawai M, Mostafapour AS (1989).  Increased resistance of the collagen in avian dystrophic muscle to collagenolytic attack.  Evidence for increased crosslinking.  Muscle and Nerve 12:476-485.
  • Feit H, Kawai M, Mostafapour AS (1989).  The role of collagen crosslinking in the increased stiffness of avian dystrophic muscle.  Muscle and Nerve 12:486-492.
  • Tawada K, Kawai M (1990).  Covalent cross-linking of single muscle fibers from rabbit psoas increases oscillatory power.  Biophys J 57:643-647.
  • Kawai M, Wray JS, Güth K (1990).  Effect of ionic strength on cross-bridge kine­tics as studied by sinusoidal analysis, ATP hydrolysis rate, and X-ray diffraction tech­niques in chemically skinned rabbit psoas fibres.  J Muscle Res Cell Mot 11:392-402.
  • Saeki Y, Kawai M, Zhao Y (1991).  Comparison of cross-bridge dynamics between intact and skinned myocardium from ferret right ventricles.  Circ Res 68:772-781.
  • Kawai M, Halvorson HR (1991).  Two step mechanism of phosphate release and the mechanism of force generation in chemically skinned rabbit psoas muscle.  Biophys J 59:329-342. PMID 2009356, PMC1281150
  • Kawai M, Wray JS, Zhao Y (1993).  The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers.  I. Proportionality between the lattice spacing and the fiber width.  Biophys J 64:187-196.
  • Zhao Y, Kawai M (1993).  The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers.  II. Elementary steps affected by the spacing change.  Biophys J 64:197-210.
  • Kawai M, Saeki Y, Zhao Y (1993).  Cross-bridge scheme and the kinetic constants of elementary steps deduced from chemically skinned papillary and trabecular muscles of the ferret.  Circ Res 73:35-50. PMID: 8508533.
  • Kawai M, Zhao Y (1993).  Cross-bridge scheme and force per cross-bridge state in skinned rabbit psoas muscle fibers.  Biophys J 65:638-651.
  • Zhao Y, Kawai M (1994).  BDM affects nucleotide binding and force generation steps of the cross-bridge cycle in rabbit psoas muscle fibers.  Am Physiol 266(Cell Physiol 35):C437-C447.
  • Schraeger JA, Canby CA, Rongish BJ, Kawai M, Tomanek, RJ (1994).  Normal left ventricular diastolic compliance following regression of hypertrophy.  J Cardiovasc Pharm 23:349-357
  • Zhao Y, Kawai M (1994).  Kinetic and thermodynamic studies of the cross-bridge cycle in rabbit psoas muscle fibers.  Biophys J 67:1655-1668. PMID 7819497, PMC1225527
  • Raucher D, Fajer PG, Sar C, Hideg K, Zhao Y, Kawai M, Fajer PG (1995).  A novel electron paramagnetic resonance spin label and its application to study the cross-bridge cycle.  Biophys J 68:128s-134s. PMC1281970.
  • Murphy KP, Zhao Y, Kawai M (1996).  Molecular forces involved in force generation during skeletal muscle contraction.  J Exptl Biol 199:2565-2571.  http://dx.doi.org/10.14814/phy2.12174. PMID 9110950.
  • Zhao Y, Kawai M (1996).  Inotropic agent EMD-53998 weakens nucleotide and phosphate binding to cross-bridges in porcine myocardium.  Am J    Physiol  271(Heart Circ Physiol 4):H1394-1406.  PMID 8897933.
  • Zhao Y, Swamy PMG, Humphries KA, Kawai M (1996).  The effect of partial extraction of troponin C on the elementary steps of the cross-bridge cycle in rabbit psoas fibers.  Biophys J 71:2759-2773.  http://dx.doi.org/10.1016/S0006-3495(96)79469-9
  • Wang G, Kawai M (1996).  Effects of MgATP and MgADP on the cross-bridge kinetics of rabbit soleus slow-twitch muscle fibers.  Biophys J 71:1450-1461.  http://dx.doi.org/10.1016/S0006-3495(96)79346-3
  • Wang G, Kawai M (1997).  Force generation and phosphate release steps in skinned rabbit soleus slow-twitch muscle fibers.  Biophys J 73:878-894.  http://dx.doi.org/10.1016/S0006-3495(97)78121-9         
  • Kawai M (1998).  Comments on the paper by Dr. David Smith entitled “A strain-dependent ratchet model for [phosphate]-and [ATP]-dependent muscle contraction.”  J Muscle Res Cell Mot 19:713-715.  http://dx/doi.org/10.1023/A:1005393401060
  • Wang G, Ding W, Kawai M (1999).  Does thin filament compliance diminish the cross-bridge kinetics?  A study in rabbit psoas fibers.  Biophys J 76:978-984.  http://dx.doi.org/10.1016/S0006-3495(99)77261-9
  • Kawai M, Kawaguchi K, Saito M, Ishiwata S (2000).  Temperature change does not affect force between single actin filaments and HMM from rabbit muscles.  Biophys J 78:3112-3119.  http://dx.doi.org/10.1016/S0006-3495(00)76848-2
  • Wang G, Kawai M (2001).  Effect of temperature on elementary steps of the cross-bridge cycle in rabbit soleus slow-twitch muscle fibres.  J Phys 531.1:219-234.  http://dx.doi.org/10.1111/j.1469-7793.2001.0219j.x. PMID: 11179405, PMC2278446
  • Fujita H, Sasaki D, Ishiwata S, Kawai M (2002).  Elementary steps of the cross-bridge cycle in bovine myocardium with and without regulatory proteins.  Biophys J 82(2):915-928.  PMID 11806933, PMC1301900, http://dx.doi.org/10.1016/S0006-3495(02)75453-2
  • Fujita H, Kawai M (2002).  Temperature effect on isometric tension is mediated by regulatory proteins tropomyosin and troponin in bovine myocardium.  J Physiol (Lond) 539.1:267-276.  
  • Ding W, Fujita H, Kawai M (2002).  The length of cooperative units on the thin filament in rabbit psoas muscle fibres.  Experimental Physiology 87.6:691-697.  http://dx.doi.org/10.1113/eph8702448       
  • Kawai M (2003).  What do we learn by studying the temperature effect on isometric tension and tension transients in mammalian striated muscle fibres?  J Muscle Res Cell Motil 24:127-138. PMID: 14609024. http://dx.doi.org/10.1023/A:1026093212111        
  • Lu X, Tobacman LS, Kawai M (2003).  Effects of tropomyosin internal deletion Δ23Tm on isometric tension and the cross-bridge kinetics in bovine myocardium.  J Physiol (Lond) 553.2:457-471.  http://dx.doi.org/10.1113/jphysiol.2003.053694    
  • Fujita H, Lu X, Suzuki M, Ishiwata S, Kawai M (2004).  The effect of tropomyosin on force and elementary steps of the cross-bridge cycle in bovine myocardium.  J Physiol (Lond) 556.2:637-649.  http://dx.doi.org/10.1113/jphysiol.2003.059956    
  • Lu X, Bryant MK, Bryan K, Rubenstein PA, Kawai M (2005).  Role of the N-terminal negative charge of actin in cross-bridge kinetics and force gener­ation in reconstituted bovine myocardium.  J Physiol (Lond) 564.1:65-82.  http://dx.doi.org/10.1113/jphysiol.2004.078055    
  • Galler S, Wang BG, Kawai M (2005).  Elementary steps of the cross-bridge cycle in fast-twitch fiber types from rabbit skeletal muscles.  Biophys J 89:3248-3260.  http://dx.doi.org/10.1529/biophysj.104.056614    
  • Kawai M, Kido T, Vogel M, Fink RHA, Ishiwata S (2006).  Temperature change does not affect force between regulated actin filaments and HMM in single molecule experiments.  J Physiol (Lond) 574.3:877–887.  10.1113/jphysiol.2006.111708
  • Kawai M, Ishiwata S (2006).  Use of thin filament reconstituted muscle fibres to probe the mechanism of force generation.  J Muscle Res Cell Motil 27:455-468. PMID 16909198, PMC2896216, 10.1007/s10974-006-9075-4
  • Lu X, Tobacman LS, Kawai M (2006).  Temperature dependence of isometric tension and cross-bridge kinetics of cardiac muscle fibers reconstituted with a tropomyosin internal deletion mutant.  Biophys J  91(11):4230-4240.  10.1529/biophysj.106.084608
  • Kawai M, Halvorson HR (2007).  Force transients and minimum cross-bridge models in muscular contraction.  J Muscle Res Cell Motil         28:371-395. PMID 18425593, PMC2896253, http://dx.doi.org/10.1007/s10974-008-9131-3 
  • Kawai M, Lu X, Hitchcock-DeGregori SE, Stanton KJ, Wandling MW (2009).  Tropomyosin period 3 is essential for enhancement of isometric tension in thin filament-reconstituted bovine myocardium.  J Biophysics  2009:1-17. PMID 20130792, PMC 2814127, http://dx.doi.org/10.1155/2009/380967      
  • Lu X, Heeley DH, Smillie LB, Kawai M (2010).  The role of tropomyosin isoforms and phosphorylation in force generation in thin-filament reconsti­tuted bovine cardiac muscle fibres.  J Muscle Res Cell Motil 31:93–109. PMID 20559861, PMC3089900, http://dx.doi.org/10.1007/s10974-010-9213
  • Bai F, Weis A, Takeda AK, Chase PB, Kawai M (2011).  Enhanced active cross-bridges during diastole: molecular pathogenesis of tropomyosin’s HCM mutations.  Biophys J 100:1014-1023.   10.1016/j.bpj.2011.01.001
  • Muthu P, Wang L, Yuan C-C, Kazmierczak K, Huang W, Hernandez OM, Kawai M, Irving T, Szczesna-Cordary D (2011).  Structural and functional aspects of myosin ELC-mediated cardiac muscle contraction.  FASEB J   11-191973:1-12. PMID 21885653, PMC3236635. http://dx.doi.org/10.1096/fj.11-191973       
  • Oguchi Y, Ishizuka J, Hitchcock-DeGregori SE, Ishiwata S, Kawai M (2011). The role of tropomyosin domains in cooperative activation of the actin-myosin interaction. J Mol Biol 414: 667-680.  http://dx.doi.org/10.1016/j.jmb.2011.10.026        
  • Candau R, Kawai M (2011).  Correlation between cross-bridge kinetics obtained from Trp fluorescence of myofibril suspensions and mechanical studies of single muscle fibers in rabbit psoas. J Muscle Res Cell Motil 32:315-326.  http://dx.doi.org/10.1007/s10974-011-9264-7
  • Iorga B, Wang L, Stehle R, Pfitzer G, Kawai M (2012).  ATP binding and cross-bridge detachment steps during full Ca2+ activation: Comparison of myofibril and muscle fibre mechanics by sinusoidal analysis. J Physiol (Lond) 590.14:3361–3373. PMID 22586213, PMC3459048, 10.1113/jphysiol.2012.228379
  • Bai F, Groth HL, Kawai M (2012). DCM-related tropomyosin mutants E40K/E54K over-inhibit the actomyosin interaction and lead to a decrease in the number of cycling cross-bridges. PLoS ONE  7:(e4741)1-12. 10.1371, 10.1371/journal.pone.0047471
  • Wang L, Muthu P, Szczesna-Cordary D, Kawai M (2013). Characteriza­tions of myosin essential light chain's N-terminal truncation mutant Δ43 in transgenic mouse papillary muscles by using tension transients in response to sinusoidal length alterations. J Muscle Res Cell Motil 34(9):93-105. PMID 23397074, PMC3656599, http://dx.doi.org/10.1007/s10974-013-9337
  • Bai F, Caster HM, Pinto JR, Kawai M (2013).  Analysis of the molecular pathogenesis of cardiomyopathy-causing cTnT mutants I79N, ΔE96, and ΔK210. Biophys J 104(9):1979-1988. PMID 23663841, PMC3647163, http://dx.doi.org/10.1016/j.bpj.2013.04.001
  • Wang L, Muthu P, Szczesna-Cordary D, Kawai M. (2013).  Diversity and similarity of motor function and cross-bridge kinetics in papillary muscles of transgenic mice carrying myosin regulatory light chain mutations D166V and R58Q.  J Molec Cell Cardiol 62:153-163. PMID 23727233, PMC3809071, http://dx.doi.org/10.1016    
  • Bai F, Wang L, Kawai M (2013).  A study of tropomyosin’s role in cardiac function and disease using thin-filament reconstituted myocardium.              J Muscle Res Cell Motil 34:295-310. PMID 23700264, PMC3849125, http://dx.doi.org/10.1007/s10974-013-9343
  • Wang L, Kawai M (2013). A re-interpretation of the rate of tension redeve­lop­ment (kTR) in active muscle. J Muscle Res Cell Motil 34: 407-415. PMID 24162314, PMC3909470, http://dx.doi.org/10.1007/s10974-013-9366-5                      
  • Wang L, Ji X, Barefield D, Sadayappan S, Kawai M (2014). Phosphorylation of cMyBP-C affects contractile mechanisms in a site specific manner. Biophys J. 106:1112-1122. PMID 24606935, PMC4026776,  http://dx.doi.org/10.1016/j.bpj.2014.01.029         
  • Bai F, Caster HM, Rubenstein PA, Dawson JF, Kawai M (2014).  Using baculovirus/insect cell expressed recombinant actin to study the molecular pathogenesis of HCM caused by actin mutation A331P.  J Mol Cell Cardiol 74:64-75. PMID 24793351, PMC4264970, http://dx.doi.org/10.1016/j.yjmcc.2014.04.014
  • Wang L, Sadayappan S, Kawai M (2014).  Cardiac Myosin Binding Protein C Phosphorylation Affects Cross-bridge Cycle’s Elementary Steps in a Site-specific Manner.  Plos One e113417, 1-21. PMID 25420047, PMC4242647,  http://dx.doi.org/10.1371/journal.pone.0113417.
  • Bai F, Caster HM, Dawson JF, Kawai M (2015).  The immediate effect of HCM causing actin mutants E99K and A230V on actin-Tm-myosin interaction in thin-filament reconstituted myocardium.  J Mol Cell Cardiol 79:123-132. PMID 25451174, http://dx.doi.org/10.1016/j.yjmcc.2014.10.014
  • Wang L, Bahadir A, Kawai M (2015). High ionic strength depresses muscle contractility by decreasing both force per cross-bridge and the number of strongly attached cross-bridges. J Muscle Res Cell Motil 36:227-241. DOI 10.1007/s10974-015-9412-6. PMID 25836331, PMC4472495.
  • Kawai M, Karam TS, Michael JJ, Wang L, Chandra M (2016). Comparison of elementary steps of the cross-bridge cycle in rat papillary muscle fibers expressing α-and β-myosin heavy chain with sinusoidal analysis. J Muscle Res Cell Motil 37:203-214.
  • Kawai M, Johnston JR, Karam T, Wang L, Singh RK, Pinto JR (2017). Myosin rod hypophosphorylation and CB kinetics in papillary muscles from a TnC-A8V KI mouse model. Biophys J 112:1726-1736.
  • Wang L, Kazmierczak K, Yuan C-C, Yadav S, Kawai M*, Szczesna-Cordary D* (*Communicating authors) (2017).Cardiac Contractility, Motor Function and Cross-Bridge Kinetics in N47K-RLC Mutant Mice. FEBS J. 284(12): 1897-1913.
  • Wang L, Bai F, Zhang Q, Song W, Messer A, Kawai M (2017) Development of apical hypertrophic cardiomyopathy with age in a transgenic mouse model carrying the cardiac actin E99K. J Muscle Res Cell Motil 38:421-435.
  • Ishii S, Kawai M, Ishiwata S, Suzuki M (2018). Estimation of actomyosin active force maintained by tropomyosin and troponin complex under vertical forces in the in vitro motility assay system. PLoS One. 13(2): e0192558. doi: 10.1371/journal.pone.0192558. PMCID: PMC5805308
  • Kawai M, Karam TS, Kolb J, Wang L, Granzier HL (2018). Nebulin increases thin filament stiffness and force per cross-bridge in slow-twitch soleus muscle fibers. J Gen Physiol 150:1510-1522.
  • Ishii S, Suzuki M, Ishiwata S, Kawai M (2019). Functional significance of HCM mutants of tropomyosin, V95A and D175N, studied with in vitro motility assays. Biophysics and Physicobiology 16:28-40.
  • Kawai M, Jin JP (2021) Mechanisms of Frank-Starling law of the heart and stretch activation in striated muscles may have a common molecular origin. J Muscle Res Cell Motil (in press). DOI: 10.1007/s10974-020-09595-2. https://doi.org/10.1007/s10974-020-09595-2
  • Kawai M, Stehle R, Pfitzer G, Iorga B (2021) Phosphate has dual roles in cross-bridge kinetics in rabbit psoas single myofibrils. J Gen Physiol (2021) 03-01-2021 issue, vol. 153 no. 3. (in press) DOI 10.1085/jgp.202012755. https://doi.org/10.1085/jgp.202012755
  • Zhang J, Wang L, Kazmierczak K, Yun H, Szczesna-Cordary D, Kawai M (2021) Hypertrophic cardiomyopathy associated E22K mutation in myosin regulatory light chain decreases calcium-activated tension and stiffness and reduces myofilament Ca2+ sensitivity. FEBS J 288(15):4596-4613. DOI: 10.1111/febs.15753. 
  • Xi J, Ye Y, Mokadem M, Yuan J, Kawai M (2022) The effect of gender and obesity in modulating cross‑bridge function in cardiac muscle fibers. J Muscle Res Cell Motil 43(4):157-172. doi: 10.1007/s10974-022-09627-z. https://doi.org/10.1007/s10974-022-09627-z

  • Xi J, Feng H-Z, Jin J-P, Yuan J, Kawai M (2024) Biomechanical evaluation of flash‑frozen and cryo‑sectioned papillary muscle samples by using sinusoidal analysis: cross‑bridge kinetics and the effect of partial Ca2+ activation. J Muscle Res Cell Motil 45(3):95-113. https://doi.org/10.1007/s10974-024-09667-7 
  • Kawai M, Iorga B (2024) Oscillatory work and the step that generates force in single myofibrils from rabbit psoas. Pflügers Archiv - European J Physiology 476(6):949-962. https://doi.org/10.1007/s00424-024-02935-y

     

Book Chapters

  • Kawai M, Brandt PW (1978).  Studies of cross-bridge behavior when the muscle length is changed in a sinusoidal manner.  In International Summer School of Biophysics (pp. 17-20) held at Kobe, Japan (Aug. 30-Sept. 2).
  • Kawai, M (1979).  Effect of MgATP on cross-bridge kinetics in chemically skinned rabbit psoas fibers as measured by sinusoidal analysis technique.  In H Sugi, GH Pollack, (Eds.), Cross-bridge Mechanism in Muscle Contraction (pp. 149-169).  Tokyo: University of Tokyo Press.
  • Kawai M, Brandt PW (1979).  Mechanochemistry of actin-myosin interaction.  In FA Pepe, JW Sanger, VT Nachmias, (Eds.), Motility in Cell Function (pp. 411-414).  New York: Academic Press.
  • Kawai M (1982).  Correlation between exponential processes and cross-bridge kinetics.  In BM Twarog, RJC Levine, MM Dewey, (Eds.), Basic Biology of Muscles: A Comparative Approach (pp. 109-130).  New York: Raven Press.
  • Kawai M, Brandt PW, Cox RN (1984).  The role of Ca2+ in cross-bridge kinetics in chemically skinned rabbit psoas fibers.  In GJ Pollack, H Sugi, (Eds.), Advances in Experimental Medicine and Biology: Vol. 170. Contractile Mechanism in Muscle (pp. 657-672).  New York: Plenum Press.
  • Kawai M (1985).  The mechanism of muscular contraction: Frequency response function of skinned fibers and an interpretation.  In HR Lang, (Ed.), 20 Years of The Department of Pure and Applied Science, (pp. 121-127).  Special Publication by the Anniversary Committee, Tokyo University.
  • Kawai M, Güth K, Cornacchia TW (1988).  The role of monovalent phosphate anions in the cross-bridge kinetics of chemically skinned rabbit psoas fibers.  In H Sugi, GJ Pollack, (Eds.), Molecular Mechanism of Muscle Contraction (pp. 203-214).  New York: Plenum Publishing Co.
  • Kawai M, Halvorson HR (1989).  Effect of MgATP and MgADP on the cross-bridge kinetics in chemically skinned rabbit psoas fibers: An interpretation of a fast exponential process (C).  In RJ Paul, H Yamada, G Elzinga (Eds.), Muscle Energetics (Prog Clin Biol Res 315:51-62).  New York: Alan R Liss
  • Marcussen BL, Kawai M (1990).  Role of MgATP and inorganic phosphate ions in crossbridge kinetics in insect (Lethocerus Colossicus) flight muscle.  In N. Sperelakis and J. D. Wood (Eds.), Frontiers in Smooth Muscle Research (pp. 805-813).  New York: Wiley-Liss.
  • Kawai M, Zhao Y, Halvorson H R (1993).  Elementary steps of contraction probed by sinusoidal analysis technique in rabbit psoas fibers.  In H Sugi and G J Pollack (Eds.), Mechanisms of Myofilament Sliding in Muscle Contraction (pp. 567-577).  New York: Plenum Press.
  • Zhao Y, Kawai M, Wray J (1993).  The effect of lattice spacing change on cross-bridge kinetics in rabbit psoas fibers.  In H Sugi and G J Pollack (Eds.), Mechanisms of Myofilament Sliding in Muscle Contraction (pp. 581-592).  New York: Plenum Press.
  • Kawai M (1993).  Kawai's response to Horiuti and Sakoda.  Biophys J 65:2263-2264.
  • Kawai M, Zhao Y (1995).  Nucleotide binding site of myosin head is under the influence of thin filament proteins. Biophys J 68:216s.
  • Zhao Y, Kawai M (1995).  The hydrophobic interaction between actin and myosin underlies the mechanism of force generation by cross-bridges.  Biophys J 68 (4 Suppl):332s. 
  • Kawai M, Candau R (2010).  Muscle contraction and supplying ATP to muscle cells. In: Connes P, Hue O, Perrey S (Ed.), Handbook of Exercise Physiology – From a cellular to an integrative approach (pp. 3-26).  IOS Press, Amsterdam.
  • Kawai M, Lamb G, Galler, S (2015).  Editorial on EMC 2014 special issue.  J Muscle Res Cell Mot. 36:1-3. Doi: 10.1007/s10974-014-9401-1.
  • Kawai M (2018a). Basic elements of viscoelasticity in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 1-7, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2018b). Reaction processes (chemical kinetics) and their application to muscle biology in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 9-22, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2018c). How to characterize chemical reactions occurring in muscle fibers? in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 23-31, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2018d). Structure and function of muscle cells in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 33-64, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2018e). Mathematics Needed to Solve Problems of Contraction in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 65-76, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2018f). Computer interfacing of experimental apparatus in Biomechanics, Muscle Fibers, and How to Interface Experimental Apparatus to a Computer (Kawai, M., ed) pp. 77-96, Springer International Publishing AG (London, UK). DOI https://doi.org/10.1007/978-3-319-72036-4. ISBN 978-3-319-72034-0 (hard copy), 978-3-319-72036-4 (eBook).
  • Kawai M (2019). Caspar Rüegg Obituary. J Muscle Res Cell Mot. 40: 286. In Johann Caspar Rüegg (1930–2018), edited by Gabriele Pfitzer and Avril V Somlyo. J Muscle Res Cell Mot. 40: 279-289.